Pluggable Transport UDP Support Proposal

Scope of Work
Obfuscating Tunneling Relay
Communicating with the Relay
Integration with TCP Transports
Relay Configuration Headers
Relaying Data
Configuring the TURN Server
TURN Relay Exit
Obfuscating Client to Obfuscating Server Communication

Scope of Work

UDP Support for Pluggable Transports could refer to two basic concepts: allowing use of UDP
for transports, and allowing use of UDP for applications. There are 4 possible configurations:

Application | Transport Status

TCP TCP Currently Supported

UDP TCP Discussed in this proposal
TCP UDP Untried, but possible

UbP UbDP Possible Future Work

All transports that are currently implemented use TCP. Therefore, this proposal will focus on
adding UDP application support using the existing TCP transports. This means that the
application client will send UDP packets to the obfuscation client, TCP packets will be sent
between the obfuscation and the obfuscation server, and then the obfuscation server will send
UDP packets to the application server.

The goal of this proposal is to add UDP support to the PT implementation. Therefore, "RFC
6062 - TCP relaying TURN extension", is not in scope. This extension, if implemented, would
allow TURN to be used instead of SOCKS for proxying TCP application traffic.

There is a known issue with the performance of UDP over TCP head of line blocking. As this
proposal is just a first step at enabling UDP application traffic over Pluggable Transports,
potential performance issues of the implementation are outside of the scope of this proposal.



Obfuscating Tunneling Relay

The obfuscation client and server together form an obfuscating tunneling relay that appears to
the application client and application server as a proxy. Unlike a normal proxy, it must be split
into two components. This is because, in the use case in which a Pluggable Transport is used,
application traffic cannot transit the network between the application client and the application
server due to filtering. Therefore, a traditional single hop relay will not generally work as either
one side or the other will encounter filtering. With an obfuscating tunneling relay, the proxy is
broken into two pieces. The transport client talks to the application client locally. The transport
server talks to the application server over the unfiltered Internet. The transport client talks to the
transport server using an obfuscated protocol. The application protocol is therefore tunnelled
inside the transport protocol.

Communicating with the Relay

Currently, communicating with the relay uses SOCKS5. This is sufficient for tunneling TCP
applications over TCP transports. However, the goal of this proposal is to tunnel UDP
applications over TCP transports. There is a version of UDP tunneling available in the SOCKS5
specification. However, it is not implemented in application clients. The alternative proposed
here is to use TURN as the protocol to communicate with the relay. This is an alternative
protocol to SOCKS5. It has mechanisms for proxying UDP traffic. The basic mechanism of
TURN is that the application client sends UDP control packet to the TURN server to allocate
bindings, which are externally routable addresses. Once a binding has been established, the
application client can send UDP data packets and these will get forwarded to the destination.

TURN has a number of related specifications. The following guide shows which RFCs will be
implemented as part of this proposal, as well as which will be held for possible future
investigation, which are apparently not relevant to our use case, and which are officially
declared to be obsolete:

e Implementing as part of this proposal
o RFC 5766 - base TURN specs
o RFC 5389 - base "new" STUN specs
e Not implementing as part of this proposal
o Possible future investigation
m RFC 6156 - IPv6 extension for TURN
m TURN Bandwidth draft specs
(http://tools.ietf.org/html/draft-thomson-tram-turn-bandwidth-01)
o Not apparently relevant
RFC 5769 - test vectors for STUN protocol testing
RFC 6062 - TCP relaying TURN extension
RFC 6156 - IPv6 extension for TURN
RFC 7443 - ALPN support for STUN & TURN


http://tools.ietf.org/html/draft-thomson-tram-turn-bandwidth-01

m RFC 6062 - TCP relaying TURN extension
m RFC 7635 - oAuth third-party TURN/STUN authorization
m Origin field in TURN (Multi-tenant TURN Server)
(https://tools.ietf.org/html/draft-ietf-tram-stun-origin-06)
o Officially obsolete
m RFC 3489 - "classic" STUN

The two RFCs being implemented are RFC 5766 (base TURN) and RFC 5389 (base STUN).
The RFCs on IPv6 and bandwidth are marked for future possible investigation. The other RFCs
are deemed not relevant or obsolete.

Integration with TCP Transports

Once a TURN server has been implemented, the next step is to hook it up to the existing
transports. There are two parts to this: mapping the information contained in the TURN headers
to the information contained in the SOCKS headers, and mapping the UDP packets to a TCP
datastream.

Relay Configuration Headers

The relay needs 3 pieces of information:

1. The obfuscation server destination address
2. Parameters for the obfuscating transport
3. The application server destination address

In the current SOCKS implementation, these are provided by parsing the SOCKS protocol
headers that are placed at the beginning of the TCP stream before the data. Of these 3 pieces
of information, the SOCKS protocol only has a field for the application server destination
address. Therefore, the obfuscation server destination address and parameters for the
obfuscating transport are encoded by overloading the username and password fields in the
SOCKS header normally used for authentication. These are in a format specific to the
obfuscation client and must be encoded and placed there by the application client. In theory,
they could be pre-encoded and given to the user to place in the username and authentication
fields when configuring the application to use the SOCKS proxy. In practice, the application
client is aware that it is using a non-standard SOCKS proxy and encodes the information and
places it into the username and passwords fields. The obfuscation client parses these fields and
extracts the information. It is then passed to the transport using the transport API.

In order to enable UDP application support for existing transports, this same information that is
encoded in the SOCKS headers information must instead be encoded in the TURN protocol.
Fortunately, TURN is similar to SOCKS in that there are also username and password fields
normally used for authentication. The necessary information can therefore be encoded in a
similar way into these fields. Also like SOCKS, the TURN protocol has a dedicated field for the
application server destination address. The TURN implementation can therefore behave in a
similar manner to the SOCKS implementation, parsing the username and password fields,


https://tools.ietf.org/html/draft-ietf-tram-stun-origin-06

extracting the necessary information, and passing it to the transport API. One significant
difference between the way these fields are handled in SOCKS and TURN is that in SOCKS the
headers are added to the beginning of each TCP stream. In TURN, they are added to each
UDP packet.

Relaying Data

In the current implementation, once the SOCKS headers have been parsed, the SOCKS server
no longer handles the connection. The TCP connection is passed to the transport and the
transport is tasked with handling it. The transport therefore does not have direct access to the
SOCKS headers, as it receives the stream after it has been advanced past the end of the
headers.

The situation with TURN is somewhat different. There is no stream, only individual UDP
packets. Each packet could be either a control or data packet, and each packet could also be
bound for a different destination. Therefore, the information which for TCP streams would be
included in the SOCKS header, in the case of TURN is included as a header on each UDP
packet.

When receiving a UDP packet that is a data packet, the TURN server strips the headers,
retaining the data, and then sends the packet through the transport. However, since the existing
transports use TCP, the UDP packets need to be packaged into a stream. Fortunately, RFC
5389 already specifies a framing protocol for transmitting UDP packets over TCP transport
streams, specifically Section 7.2.2.

Configuring the TURN Server

The current PT implementation provides a SOCKS server. In order to add UDP support, a
TURN server will be added. However, there is currently no mechanism for supporting both
SOCKS and TURN at the same time. Specifically, for an incoming connection to a obfuscating
server there is nothing in the communication protocol between the obfuscating client and
obfuscating server to indicate whether the obfuscating server should connect to the application
server using TCP or UDP. Therefore, for this initial work, a command line flag will be added to
the PT implementation that specifies TURN mode (SOCKS mode is the default). The
obfuscating client will run either a TURN or SOCKS server, depending on the flag. The
obfuscating server will makes either UDP or TCP connections to the application server,
depending on the same flag.



TURN Relay Exit

The original PT specification was designed for the use case where Tor is being used as both a
client and server. On the client side, Tor speaks the custom SOCKS protocol to the PT client,
including necessary configuration information in the user and password fields. On the server
side, the PT server proxies incoming connection streams to a local Tor server. The destination
server address is therefore static and global. It is configured at runtime when the PT server is
launched. Connection to the application server is handled independently of the PT server,
through negotiation between the Tor client and Tor server using the Tor protocol. This
negotiation is opaque to the PT client and server.

In the TURN implementation, there is no local Tor server. UDP supports is intended for different
use cases other than Tor. Additionally, Tor cannot receive or send UDP traffic, so it cannot be
used on either the client or server. On the client side, the role of Tor can be replaced with any
TURN client that can provide the necessary information in the user and password fields. On the
server side, something needs to take the role of Tor in making a connection to the destination
application server. The proposed solution is to provide normal TURN proxy capabilities as part
of the PT server. Like any TURN server, the PT server receives UDP packets and forwards
them to the destination application server.

Obfuscating Client to Obfuscating Server
Communication

In the current SOCKS implementation, there is no explicit communication protocol between the
obfuscating client and obfuscating server. Each transport will use a transport-specific method of
communication. However, there is no standard mechanism to pass the destination address of
the application server to the obfuscating server. In the current use case for the SOCKS server,
the obfuscating server acts as a transparent proxy to a local Tor server. The destination server
address is therefore static and global. It is configured at runtime when the PT server is
launched.

In the TURN implementation, each UDP packet contains headers specifying the application
server destination address, the PT server destination address, and transport-specific
parameters. The PT client receives these packets and strips the PT server destination address
and transport-specific parameters, leaving the data and the header specifying the application
server destination address. These stripped packets are packaged into a datastream and
delivered to the PT server over the chosen obfuscated transport protocol using TCP. On the PT
server, the obfuscated transport connection using TCP is received and the packets are
unpacked from the datastream. They are then parsed as normal TURN packets. Since both
control and data packets are relayed, the TURN server that is part of the PT server can parse



the packets and relay them just as any TURN server would, using the PT client as an
application client. The replies are similarly packaged and sent over the transport and then
relayed from the PT client to the application client.



